Excitons Bound To Defects

Identifying crystal defects in a 2D crystal usually requires an electron microscope to directly resolve atomic details, a complex and time-consuming process on expensive equipment that can damage the sample under electron irradiation. By establishing a correlation between the modified optical response and certain defects, the MIP team and collaborators have demonstrated a quick and non-destructive method of identifying defects in 2D crystals. The reason for this correlation is identified through first-principles calculations: electrons trapped by sulfur vacancies – the absence of a sulfur atom – have energies that are forbidden for electrons in defect-free regions, and therefore emit light at wavelengths different from that of the latter.