Quantification of defects engineered in single layer MoS2

user highlight

Atomic defects are controllably introduced in suspended single layer molybdenum disulfide (1L MoS2) using helium ion beam. Vacancies exhibit one missing atom of molybdenum and a few atoms of sulfur. Quantification was done using a Scanning Transmission Electron Microscope (STEM) with an annular detector. Experimentally accessible inter-defect distance was employed to measure the degree of crystallinity in 1L MoS2. Correlation between the appearance of an acoustic phonon mode in the Raman spectra and the inter-defect distance was established, which introduces a new methodology for quantifying defects in 2D materials.


National Science Foundation

Division of Materials Research

2415 Eisenhower Avenue

Alexandria, VA 22314

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.